Image Set-Based Hand Shape Recognition Using Camera Selection Driven by Multi-class AdaBoosting

نویسندگان

  • Yasuhiro Ohkawa
  • Chendra Hadi Suryanto
  • Kazuhiro Fukui
چکیده

We propose a method for image set-based hand shape recognition that uses the multi-class AdaBoost framework. The recognition of hand shape is a difficult problem, as a hand’s appearance depends greatly on view point and individual characteristics. Using multiple images from a video camera or a multiple-camera system is known to be an effective solution to this problem. In our proposed method, a simple linear mutual subspace method is considered as a weak classifier. Finally, strong classifiers are constructed by integrating the weak classifiers. The effectiveness of the proposed method is demonstrated through experiments using a dataset of 27 types of hand shapes. Our method achieves comparable performance to the kernel orthogonal mutual subspace method, but at a smaller computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition

License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...

متن کامل

Automatic detection of impact craters on Mars using a modified adaboosting method

The accurate recognition of impact craters is important to analyze and understand the relative dating of Martian surface. Since manually identifying small craters in a deluge of high-resolution Martian images is a tremendous task, a robust automatic detection algorithm of the crater is needed, but subject to lots of uncertainties and low successful detection rates. In this paper, a modified ada...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Persian sign language detection based on normalized depth image information

There are many reports of using the Kinect to detect hand and finger gestures after release of device by Microsoft. The depth information is mostly used to separate the hand image in the two-dimension of RGB domain. This paper proposes a method in which the depth information plays a more dominant role. Using a threshold in depth space first the hand template is extracted. Then in 3D domain the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011